5g
Factories of the Future
Media & Entertainment
Smart Cities
Smart Energy
Smart Ports
SME Opportunities
Societal Impacts
Technology Development
Telecoms Providers
5G CAM
5G Automotive
5G CAM KPIs
5G CAM Standardisation
5G Corridors
5G Multimodal Connectivity
5G Transport Network
Artificial Intelligence & Machine Learning
Artificial Intelligence & Machine Learning in big data
Artificial Intelligence & Machine Learning technologies
Big data
Big data algorithms
Big data analytics
Collaborative Classification and Models
Business Models, Process Improvement, Contract Management, KPIs and Benchmarking Indexes
Collaboration Risk and Value Sharing
Collaborative Planning and Synchromodality
Customs & Regulatory Compliance
Environmental Performance Management
Logistics Optimisation
Stock Optimisation
Supply Chain Corrective and Preventive Actions (CAPA)
Supply Chain Financing
Supply Chain Visibility
Common Information Objects
Booking
Customs Declarations
Transport Service Description
Transport Status
Waybills
Computing and Processing
Big Data Management and Analytics
Cloud
Edge
Fog
Knowledge Graphs
Machine Learning
MIST
Stream Processing
Connectivity
Architecture
Blockchain
Connectivity Interfaces
Technologies (Bluetooth, Ethernet, Wifi)
Data Management, Simulation and Dashboards
Dashboards
Data Fusion
Data Governance, Integrity, Quality Management and Harmonization
Event Handling
Open Data
Simulation
Statistics and Key Performance Indicators (KPIs)
Data market
Data ecosystem
Data marketplace
Data Platform
Data Providers
Devices
IoT Controllers
IoT Gateways
IoT Sensors
Tracking Sensors
Digitisation Frameworks
Control Towers
Data Pipelines
e-Freight
e-Maritime
National Single Windows
Port Community Systems
Federation
Data Federation
Platform Federation
Industrial IoT Sectors
Rail Sector Active Predictive Maintenance
Interoperability
Data interoperability
Data interoperability mechanisms
Interoperability solutions
Platform interoperability
IoT Secuirty, Privacy and Safety Systems
PKI Technology
Privacy-preservation
Data privacy preserving technologies
Privacy preserving technologies
Project Results
5G-SOLUTIONS Deliverables
5G-SOLUTIONS Publications
CHARIOT Capacity Building and Trainings
CHARIOT Deliverables
CHARIOT Publications
SELIS Deliverables
SELIS Publications and Press Releases
Project Results - 5g Routes
5G-ROUTES Deliverables
5G-ROUTES Innovation
5G-ROUTES Publications
Project Results - TRUSTS
TRUSTS Deliverable
TRUSTS Publications
Safety, Security and Privacy Systems
Access Management
Coordinated Border Management
Information Security
International Organisations
Risk Assessment and Management
Risk Management
Safety and Security Assessment
Source Code Analysis
Sectors and Stakeholders
Airports and Air Transport
Banks, investors and other funding providers
Custom Authorities
Facilities, Warehouses
Freight Forwarders
Inland Waterways
Multimodal Operators
Ports and Terminals
Railway
Retailers
Road Transport
Shippers
Shipping
Smart Buildings
Trusties and other Intermediary Organizations
Urban and Countryside Logistics
Urban Logistics
Sectors and Stakeholders - TRUSTS
Audit & Law firms
Corporate offices
Enterprises
Financial Institutions
Telecommunications
Security
Secured Data
Secured Infrastructure
Secured Platform
Sovereignty
Data sovereignty
Standards
Good Distribution Practices
International data standards
International Organization for Standardization (ISO)
UN/CEFACT
World Customs Organization (WCO)
Supply Chain Management
Business Models, Process Improvement, Contract Management, KPIs and Benchmarking Indexes
Risk Management
Risk-Based Controls
Screening and tracking
Supervision Approach
Technologies
5g
Agile Deployment, Configuration Management
Business Applications
Business Integration Patterns, Publish-Subscribe
Cloud Technologies/Computing, Services Virtualisation
Cognitive
Community Node Platform and Application Monitoring
Connectivity Technologies (Interfaces and Block Chain)
Hybrid S/T Communication and Navigation Platforms
IoT (Sensors, platforms)
Mobile
Physical Internet (PI)
Public key infrastructure (PKI)
Radio-frequency identification (RFID)

IoT Sensors

Importance of Sensors In the Internet of Things
IoT architecture layers
Sani Theo 28/05/2018 00:00:00

Different types of applications require different types of sensors to collect data from the environment. This article takes a look at some common IoT sensors


In an Internet of Things (IoT) ecosystem, two things are very important: the Internet and physical devices like sensors and actuators. As shown in Fig. 1, the bottom layer of the IoT system consists of sensor connectivity and network to collect information. This layer is an essential part of the IoT system and has network connectivity to the next layer, which is the gateway and network layer.

The main purpose of sensors is to collect data from the surrounding environment. Sensors, or ‘things’ of the IoT system, form the front end. These are connected directly or indirectly to IoT networks after signal conversion and processing. But all sensors are not the same and different IoT applications require different types of sensors. For instance, digital sensors are straightforward and easy to interface with a microcontroller using Serial Peripheral Interface (SPI) bus. But for analogue sensors, either analogue-to-digital converter (ADC) or Sigma-Delta modulator is used to convert the data into SPI output.


Some common types of IoT sensors

 Temperature sensors

 These devices measure the amount of heat energy generated from an object or surrounding area. They find application in air-conditioners, refrigerators and similar devices used for environmental control. They are also used in manufacturing processes, agriculture and health industry.

Temperature sensors can be used almost in every IoT environment, from manufacturing to agriculture. In manufacturing, sensors are used to monitor the temperature of machines. In agriculture, these can be used to monitor the temperature of soil, water and plants.

Temperature sensors include thermocouples, thermistors, resistor temperature detectors (RTDs) and integrated circuits (ICs). Some common types of temperature sensors are shown in Fig. 2.

Temperature sensors - IoT sensors

 

Humidity sensors

 The amount of water vapour in air, or humidity, can affect human comfort as well as many manufacturing processes in industries. So monitoring humidity level is important. Most commonly used units for humidity measurement are relative humidity (RH), dew/frost point (D/F PT) and parts per million (PPM).

HPP801A031 humidity sensor

 

Motion sensors
 
Motion sensors are not only used for security purposes but also in automatic door controls, automatic parking systems, automated sinks, automated toilet flushers, hand dryers, energy management systems, etc. You use these sensors in the IoT and monitor them from your smartphone or computer. HC-SR501 passive infrared (PIR) sensor is a popular motion sensor for hobby projects.

 

PIR motion sensor

 

Gas sensors

These sensors are used to detect toxic gases. The sensing technologies most commonly used are electrochemical, photo-ionisation and semiconductor. With technical advancements and new specifications, there are a multitude of gas sensors available to help extend the wired and wireless connectivity deployed in IoT applications.


Gas sensors

 

Smoke sensors

  Smoke detectors have been in use in homes and industries for quite a long time. With the advent of the IoT, their application has become more convenient and user-friendly. Furthermore, adding a wireless connection to smoke detectors enables additional features that increase safety and convenience.

 

Arduino-compatible smoke sensor

 

Pressure sensors

 These sensors are used in IoT systems to monitor systems and devices that are driven by pressure signals. When the pressure range is beyond the threshold level, the device alerts the user about the problems that should be fixed. For example, BMP180 is a popular digital pressure sensor for use in mobile phones, PDAs, GPS navigation devices and outdoor equipment. Pressure sensors are also used in smart vehicles and aircrafts to determine force and altitude, respectively. In vehicle, tyre pressure monitoring system (TPMS) is used to alert the driver when tyre pressure is too low and could create unsafe driving conditions.

Overview of TPMS

 

Image sensors

 These sensors are found in digital cameras, medical imaging systems, night-vision equipment, thermal imaging devices, radars, sonars, media house and biometric systems. In the retail industry, these sensors are used to monitor customers visiting the store through IoT network. In offices and corporate buildings, they are used to monitor employees and various activities through IoT networks.

 

Different types of image sensors

 

Accelerometer sensors

 These sensors are used in smartphones, vehicles, aircrafts and other applications to detect orientation of an object, shake, tap, tilt, motion, positioning, shock or vibration. Different types of accelerometers include Hall-effect accelerometers, capacitive accelerometers and piezoelectric accelerometers.

Various types of accelerometer sensors

 

IR sensors

 These sensors can measure the heat emitted by objects. They are used in various IoT projects including healthcare to monitor blood flow and blood pressure, smartphones to use as remote control and other functions, wearable devices to detect amount of light, thermometers to monitor temperature and blind-spot detection in vehicles.

IR sensor

 

Proximity sensors

 These sensors detect the presence or absence of a nearby object without any physical contact. Different types of proximity sensors are inductive, capacitive, photoelectric, ultrasonic and magnetic. These are mostly used in object counters, process monitoring and control.

Various proximity sensors

 

Reference Link

Attached Documents

The “CHARIOT IoT Search Index” aims to provide a web location where publications, articles, and relevant documents can be centralized hosted in a well-structured and easily accessed way.

Tags

Contact Us
Enter Text
Contact our department
123movie