5g
Factories of the Future
Media & Entertainment
Smart Cities
Smart Energy
Smart Ports
SME Opportunities
Societal Impacts
Technology Development
Telecoms Providers
5G CAM
5G Automotive
5G CAM KPIs
5G CAM Standardisation
5G Corridors
5G Multimodal Connectivity
5G Transport Network
Artificial Intelligence & Machine Learning
Artificial Intelligence & Machine Learning in big data
Artificial Intelligence & Machine Learning technologies
Big data
Big data algorithms
Big data analytics
Collaborative Classification and Models
Business Models, Process Improvement, Contract Management, KPIs and Benchmarking Indexes
Collaboration Risk and Value Sharing
Collaborative Planning and Synchromodality
Customs & Regulatory Compliance
Environmental Performance Management
Logistics Optimisation
Stock Optimisation
Supply Chain Corrective and Preventive Actions (CAPA)
Supply Chain Financing
Supply Chain Visibility
Common Information Objects
Booking
Customs Declarations
Transport Service Description
Transport Status
Waybills
Computing and Processing
Big Data Management and Analytics
Cloud
Edge
Fog
Knowledge Graphs
Machine Learning
MIST
Stream Processing
Connectivity
Architecture
Blockchain
Connectivity Interfaces
Technologies (Bluetooth, Ethernet, Wifi)
Data Management, Simulation and Dashboards
Dashboards
Data Fusion
Data Governance, Integrity, Quality Management and Harmonization
Event Handling
Open Data
Simulation
Statistics and Key Performance Indicators (KPIs)
Data market
Data ecosystem
Data marketplace
Data Platform
Data Providers
Devices
IoT Controllers
IoT Gateways
IoT Sensors
Tracking Sensors
Digitisation Frameworks
Control Towers
Data Pipelines
e-Freight
e-Maritime
National Single Windows
Port Community Systems
Federation
Data Federation
Platform Federation
Industrial IoT Sectors
Rail Sector Active Predictive Maintenance
Interoperability
Data interoperability
Data interoperability mechanisms
Interoperability solutions
Platform interoperability
IoT Secuirty, Privacy and Safety Systems
PKI Technology
Privacy-preservation
Data privacy preserving technologies
Privacy preserving technologies
Project Results
5G-SOLUTIONS Deliverables
5G-SOLUTIONS Publications
CHARIOT Capacity Building and Trainings
CHARIOT Deliverables
CHARIOT Publications
SELIS Deliverables
SELIS Publications and Press Releases
Project Results - 5g Routes
5G-ROUTES Deliverables
5G-ROUTES Innovation
5G-ROUTES Publications
Project Results - TRUSTS
TRUSTS Deliverable
TRUSTS Publications
Safety, Security and Privacy Systems
Access Management
Coordinated Border Management
Information Security
International Organisations
Risk Assessment and Management
Risk Management
Safety and Security Assessment
Source Code Analysis
Sectors and Stakeholders
Airports and Air Transport
Banks, investors and other funding providers
Custom Authorities
Facilities, Warehouses
Freight Forwarders
Inland Waterways
Multimodal Operators
Ports and Terminals
Railway
Retailers
Road Transport
Shippers
Shipping
Smart Buildings
Trusties and other Intermediary Organizations
Urban and Countryside Logistics
Urban Logistics
Sectors and Stakeholders - TRUSTS
Audit & Law firms
Corporate offices
Enterprises
Financial Institutions
Telecommunications
Security
Secured Data
Secured Infrastructure
Secured Platform
Sovereignty
Data sovereignty
Standards
Good Distribution Practices
International data standards
International Organization for Standardization (ISO)
UN/CEFACT
World Customs Organization (WCO)
Supply Chain Management
Business Models, Process Improvement, Contract Management, KPIs and Benchmarking Indexes
Risk Management
Risk-Based Controls
Screening and tracking
Supervision Approach
Technologies
5g
Agile Deployment, Configuration Management
Business Applications
Business Integration Patterns, Publish-Subscribe
Cloud Technologies/Computing, Services Virtualisation
Cognitive
Community Node Platform and Application Monitoring
Connectivity Technologies (Interfaces and Block Chain)
Hybrid S/T Communication and Navigation Platforms
IoT (Sensors, platforms)
Mobile
Physical Internet (PI)
Public key infrastructure (PKI)
Radio-frequency identification (RFID)

Statistics and Key Performance Indicators (KPIs)

The Importance of Business and Performance KPIs for IoT Applications
Vasu Pasupuleti 29/11/2017 00:00:00

Over the last few years, the Internet of things (IoT) has become a trending phrase for consumers and a top priority for businesses embarking on their digital transformation. Even with the growth and interest in IoT however, the meaning can still confuse people.


So, what is IoT? IoT is a network of things connected to the internet and is uniquely identifiable through its embedded computing system. These “things” may include a variety of devices like home appliances, commercial vending machines, fitness trackers, industrial gateways, connected cars, and smart factories.


And worldwide spending on IoT devices is on the rise, with IDC’s Worldwide Semiannual Internet of Things Spending Guide predicting that global spending in IoT will leap from over $800 billion in 2017 to $1.4 trillion by 2021. This increase is attributed to continued investments made by organizations in the hardware, software, services, and connectivity that enables IoT. The goal of these IoT investments? To drive operational efficiency and increase revenue through improved consumer experience.

For example, the transportation industry is using sensors to improve fuel usage in planes and trucks, while the industrial sector is using IoT to reduce gas leaks. Environmental sensors for humidity, CO2, and electricity sensors also help reduce energy costs for buildings.

 

On the other hand, IoT in sectors like retail, automotive, and media are more focused on providing consumers with a rich experience by enabling new device interactions and avenues to consume data. For example, the retail industry is using devices such as smart shelves, point of sale, and digital signage to significantly improve consumer experience in brick-and-mortar stores to drive more sales. There are also voice-controlled devices like the Amazon Echo and Google Home, which offer a premium experience by allowing consumers to play music, stream podcasts, provide weather updates, control your smart home, and more.

And it’s these type of consumer experiences that drive sales and customer loyalty. In fact, IDC reports that consumer IoT spending will be the fourth largest market segment in 2017 at $62 billion, and will jump to the third largest segment come 2021.


Monitoring IoT Performance

As the number of IoT devices in the consumer and business space increase, as will the complexity of the infrastructures needed to support the new services and touch points. With this increasing software complexity, there is also a correlated demand from users for highly-responsive, real-time digital services.

As a result, a toolset to measure and deliver an exceptional end-user experience is imperative for making an IoT application successful. And that’s precisely where AppDynamics can help. AppDynamics IoT monitoring provides visibility into your connected device applications for real-time performance diagnostics and usage analytics so you can quickly understand and resolve performance issues.


Fig 1: AppDynamics End-to-End Performance Monitoring


In Figure 1 above, you can see how AppDynamics’ end-to-end unified monitoring solution provides visibility into a complex software infrastructure. AppDynamics follows the transaction at each hop, starting from a connected device to a data center, network equipment, and all the way to the database.


AppDynamics End-User Monitoring provides great visibility into browser and mobile applications and now – with our Winter Release – we are extending it to monitor all connected devices.

IoT Monitoring Requirements

Before we built our IoT Monitoring Platform to help operations teams manage IoT applications efficiently, it was important for us to understand monitoring requirements from both the technical and business end. We built our platform with the below technical and business requirements in mind.

 

Technical Requirements

– Ability to monitor IoT applications that run on devices with different processor architectures (e.g., ARM7, x86, Cortex-M series), and a multitude of operating systems. (e.g., embedded Linux, QNX, mbed OS, VxWorks)

– Ability to monitor IoT applications written in multiple languages (e.g., C, C++, Java, Python, Javascript, Node.js).

– Overhead for monitoring IoT applications should be minimal and operate within device constraints such as memory, computing resource, and network connectivity.

– Ability to ingest data generated by IoT applications that can vary significantly based on application type. For example, an industrial gateway device might generate gigabytes of sensor data whereas a point-of-sale device may trigger thousands of user transactions per day.

 

Business Requirements

– Ability to manage the complexity of software and services offered on the new IoT device types and applications. IT needs to detect issues proactively and keep MTTR low.

– Ability to provide the same user experience, independent of device type.

– IoT devices generate tremendous amounts of data and it’s important to be able to get insights into the business performance quickly.

– Ability to correlate business performance with IoT application performance. For example, when a business is losing money, it should be easy to quickly identify the root cause of a performance issue.

– Ability to react to real-time alerts on application or business performance issues.

 

Stay tuned for the next blog post in this series, where we’ll dive into the technical details of AppDynamics’ IoT product offering, how we solved design challenges, and how we’re helping businesses tackle IoT proliferation.

Learn more about IoT Monitoring or schedule a demo of our product today.

 
Reference Link

Attached Documents

The “CHARIOT IoT Search Index” aims to provide a web location where publications, articles, and relevant documents can be centralized hosted in a well-structured and easily accessed way.

Tags

Contact Us
Enter Text
Contact our department
123movie