Factories of the Future
Media & Entertainment
Smart Cities
Smart Energy
Smart Ports
SME Opportunities
Societal Impacts
Technology Development
Telecoms Providers
5G Automotive
5G CAM Standardisation
5G Corridors
5G Multimodal Connectivity
5G Transport Network
Artificial Intelligence & Machine Learning
Artificial Intelligence & Machine Learning in big data
Artificial Intelligence & Machine Learning technologies
Big data
Big data algorithms
Big data analytics
Collaborative Classification and Models
Business Models, Process Improvement, Contract Management, KPIs and Benchmarking Indexes
Collaboration Risk and Value Sharing
Collaborative Planning and Synchromodality
Customs & Regulatory Compliance
Environmental Performance Management
Logistics Optimisation
Stock Optimisation
Supply Chain Corrective and Preventive Actions (CAPA)
Supply Chain Financing
Supply Chain Visibility
Common Information Objects
Customs Declarations
Transport Service Description
Transport Status
Computing and Processing
Big Data Management and Analytics
Knowledge Graphs
Machine Learning
Stream Processing
Connectivity Interfaces
Technologies (Bluetooth, Ethernet, Wifi)
Data Management, Simulation and Dashboards
Data Fusion
Data Governance, Integrity, Quality Management and Harmonization
Event Handling
Open Data
Statistics and Key Performance Indicators (KPIs)
Data market
Data ecosystem
Data marketplace
Data Platform
Data Providers
IoT Controllers
IoT Gateways
IoT Sensors
Tracking Sensors
Digitisation Frameworks
Control Towers
Data Pipelines
National Single Windows
Port Community Systems
Data Federation
Platform Federation
Industrial IoT Sectors
Rail Sector Active Predictive Maintenance
Data interoperability
Data interoperability mechanisms
Interoperability solutions
Platform interoperability
IoT Secuirty, Privacy and Safety Systems
PKI Technology
Data privacy preserving technologies
Privacy preserving technologies
Project Results
5G-SOLUTIONS Deliverables
5G-SOLUTIONS Publications
CHARIOT Capacity Building and Trainings
CHARIOT Deliverables
CHARIOT Publications
SELIS Deliverables
SELIS Publications and Press Releases
Project Results - 5g Routes
5G-ROUTES Deliverables
5G-ROUTES Innovation
5G-ROUTES Publications
Project Results - TRUSTS
TRUSTS Deliverable
TRUSTS Publications
Safety, Security and Privacy Systems
Access Management
Coordinated Border Management
Information Security
International Organisations
Risk Assessment and Management
Risk Management
Safety and Security Assessment
Source Code Analysis
Sectors and Stakeholders
Airports and Air Transport
Banks, investors and other funding providers
Custom Authorities
Facilities, Warehouses
Freight Forwarders
Inland Waterways
Multimodal Operators
Ports and Terminals
Road Transport
Smart Buildings
Trusties and other Intermediary Organizations
Urban and Countryside Logistics
Urban Logistics
Sectors and Stakeholders - TRUSTS
Audit & Law firms
Corporate offices
Financial Institutions
Secured Data
Secured Infrastructure
Secured Platform
Data sovereignty
Good Distribution Practices
International data standards
International Organization for Standardization (ISO)
World Customs Organization (WCO)
Supply Chain Management
Business Models, Process Improvement, Contract Management, KPIs and Benchmarking Indexes
Risk Management
Risk-Based Controls
Screening and tracking
Supervision Approach
Agile Deployment, Configuration Management
Business Applications
Business Integration Patterns, Publish-Subscribe
Cloud Technologies/Computing, Services Virtualisation
Community Node Platform and Application Monitoring
Connectivity Technologies (Interfaces and Block Chain)
Hybrid S/T Communication and Navigation Platforms
IoT (Sensors, platforms)
Physical Internet (PI)
Public key infrastructure (PKI)
Radio-frequency identification (RFID)


The Internet of Things: A world of opportunity for railroads
Pat Foran, editor 16/03/2016 00:00:00

The Internet of Things (IoT) is but one of the phrases bandied about to characterize the advanced connectivity of devices, systems and services that goes beyond machine-to-machine (M2M) communications. It covers a variety of protocols, domains and applications. In addition to IoT, there’s the Industrial Internet, the Internet of Everything and variations on each as the concept continues its creep into the branding realm. For this month’s series of articles, we’ll stick with IoT.

IoT enables freight and passenger roads to use sensors, software M2M learning, “Big Data” analytics, cloud computing and other technology to gather and analyze information from various sources and data streams — and then use those analyses to drive efficiencies, better manage operations and, possibly, offer new services.

IoT, then, represents a world of opportunity for railroads and the technology providers that serve them. And it’s a world strategists in all railroad departments — from information technology (IT) to transportation to engineering to mechanical to communication and signaling — will need to tap into and be engaged with as the digital evolution continues.

“It’s not ‘Build it and they’ll come’ — it’s ‘What is the outcome you want to drive?’” says Jamie Miller, president and chief executive officer of GE Transportation, which now characterizes itself as a global digital industrial supplier to the rail, mining, marine, stationary power and drilling industries. “From there, you work backward into the data.”

From AEI to IoT
In rail country, the data seeds were sown with automatic equipment identification (AEI) tags, the first of which were installed in North America in 1989. A train crew received a message from a wayside detector, and AEI readers updated a database with passing and directional information. They were passive tags; the power was supplied by the reader.

When the Internet entered the mainstream in the mid-1990s and the general public was well on its way to untangling the Web, North American railroads weren’t exactly early adopters. But some of their customers were. At Procter & Gamble, brand manager Kevin Ashton put radio-frequency identification (RFID) tags on packages as they moved through the supply chain, and then linked them with the Internet.

“Early on, it was just RFID,” says Keith Dierkx, IBM’s global industry leader-rail and director of the company’s Global Rail Innovation Center.

In 1999, Ashton coined the “IoT” term, using it in the title of a presentation he made at P&G, or so conventional wisdom/IoT lore goes.

From there, Ashton and others — including Dierkx, who in the late 1990s worked for sensor analytics firm Savi Technology Inc. and served with

Ashton as a technology board member of the Massachusetts Institute of Technology’s Auto-ID Center — continued to ponder the possibilities connectivity/IoT afforded within the supply chain.

Railroads, in the meantime, continued to install trackside AEI readers, and more and more rail cars featured RFID tags. The AEI sensors could provide information on rail-car location and then interact with an increasing array of monitoring and detection devices to provide an even more detailed view of the conditions of the cars, as Dierkx noted in a 2009 white paper he penned for IBM titled “The Smarter Railroad: An Opportunity for The Railroad Industry.”

“It’s like those Russian nesting dolls,” says Dierkx, who works with railroads around the globe on a range of IT and business transformation issues, including the use of predictive analytics. “Nested visibility is where this started.”

And as the rail industry became “more instrumented, interconnected and intelligent,” business model innovation became more attainable, Dierkx wrote. “For rail executives to capitalize on such change, they need to accelerate investment in new intelligence,” he noted.

Reference Link

Attached Documents

The “CHARIOT IoT Search Index” aims to provide a web location where publications, articles, and relevant documents can be centralized hosted in a well-structured and easily accessed way.


Contact Us
Enter Text
Contact our department