The Internet of Things (IoT) is but one of the phrases bandied about to characterize the advanced connectivity of devices, systems and services that goes beyond machine-to-machine (M2M) communications. It covers a variety of protocols, domains and applications. In addition to IoT, there’s the Industrial Internet, the Internet of Everything and variations on each as the concept continues its creep into the branding realm. For this month’s series of articles, we’ll stick with IoT.
IoT enables freight and passenger roads to use sensors, software M2M learning, “Big Data” analytics, cloud computing and other technology to gather and analyze information from various sources and data streams — and then use those analyses to drive efficiencies, better manage operations and, possibly, offer new services.
IoT, then, represents a world of opportunity for railroads and the technology providers that serve them. And it’s a world strategists in all railroad departments — from information technology (IT) to transportation to engineering to mechanical to communication and signaling — will need to tap into and be engaged with as the digital evolution continues.
“It’s not ‘Build it and they’ll come’ — it’s ‘What is the outcome you want to drive?’” says Jamie Miller, president and chief executive officer of GE Transportation, which now characterizes itself as a global digital industrial supplier to the rail, mining, marine, stationary power and drilling industries. “From there, you work backward into the data.”
From AEI to IoT
In rail country, the data seeds were sown with automatic equipment identification (AEI) tags, the first of which were installed in North America in 1989. A train crew received a message from a wayside detector, and AEI readers updated a database with passing and directional information. They were passive tags; the power was supplied by the reader.
When the Internet entered the mainstream in the mid-1990s and the general public was well on its way to untangling the Web, North American railroads weren’t exactly early adopters. But some of their customers were. At Procter & Gamble, brand manager Kevin Ashton put radio-frequency identification (RFID) tags on packages as they moved through the supply chain, and then linked them with the Internet.
“Early on, it was just RFID,” says Keith Dierkx, IBM’s global industry leader-rail and director of the company’s Global Rail Innovation Center.
In 1999, Ashton coined the “IoT” term, using it in the title of a presentation he made at P&G, or so conventional wisdom/IoT lore goes.
From there, Ashton and others — including Dierkx, who in the late 1990s worked for sensor analytics firm Savi Technology Inc. and served with
Ashton as a technology board member of the Massachusetts Institute of Technology’s Auto-ID Center — continued to ponder the possibilities connectivity/IoT afforded within the supply chain.
Railroads, in the meantime, continued to install trackside AEI readers, and more and more rail cars featured RFID tags. The AEI sensors could provide information on rail-car location and then interact with an increasing array of monitoring and detection devices to provide an even more detailed view of the conditions of the cars, as Dierkx noted in a 2009 white paper he penned for IBM titled “The Smarter Railroad: An Opportunity for The Railroad Industry.”
“It’s like those Russian nesting dolls,” says Dierkx, who works with railroads around the globe on a range of IT and business transformation issues, including the use of predictive analytics. “Nested visibility is where this started.”
And as the rail industry became “more instrumented, interconnected and intelligent,” business model innovation became more attainable, Dierkx wrote. “For rail executives to capitalize on such change, they need to accelerate investment in new intelligence,” he noted.